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Jump-Diffusion Option Valuation and Option-Implied
Investor Preferences: A Stochastic Dominance Approach

Abstract

We investigate the relationship between the discrete-time stochastic dominance op-
tion bounds and the continuous time arbitrage-based option pricing models when the
underlying asset returns follow a jump-diffusion. Building upon the stochastic domi-
nance approach, we drive multipored index option bounds, violations of which trigger
investment strategies that increase the expected utility of any risk-averse trader by
introducing a corresponding short (long) option in her portfolio. As trading becomes
more frequent, we provide empirical evidence that the bounds converge into a tight
limit interval that includes the Merton jump-diffusion price, and compares favorably
to the observed bid-ask spreads in option markets. For CRRA investors we also ex-
amine the limits of the admissible values of the relative risk aversion coefficient com-
patible with the boundary risk-neutral distributions extracted from underlying index
return data. We show that, unlike the option prices derived from an equilibrium jump
diffusion model in both underlying and option markets, the SD bounds can better
accommodate reasonable values of the ex-dividend expected excess return. Moreover,
the SD-restricted range of admissible RRA values is consistent with the recent macro-
finance studies of the equity premium puzzle that show the relative importance of rare
disasters in the consumption distribution in explaining the observed equity premium.

(JEL G12, G13)
Keywords. stochastic dominance; option pricing; option bounds; incomplete markets; jump
diffusion; risk aversion;
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1 Introduction

In this paper we present a model of the derivation of the risk neutral or Q-distribution for
an asset whose returns follow jump diffusion asset dynamics. Such derivations in previous
studies have relied on general equilibrium considerations involving both the underlying and
the option market data, in which the unknown parameters are estimated from both sets of
observed market prices. A key input in these derivations is the risk aversion parameter of a
representative investor, whose preferences are almost always assumed to be of the Constant
Relative Risk Aversion (CRRA) type. Unlike these approaches our model requires only
underlying market data and uses a weaker concept than equilibrium, that of stochastic
dominance (SD); it also does not assume the existence of a representative investor. We
also use our approach in order to assess the appropriateness of the various values of the
risk aversion parameter that have been used in earlier studies in conjunction with the asset
dynamics parameters extracted from econometric studies in the underlying market.

Equilibrium models are established either based on the production economy or on the ex-
change economy. In a production setting a representative investor chooses her optimal level
of consumption in each period and invests the rest in the production for future consumption,
where the production technology grows stochastically and the initial endowment is constant.
The large literature on this model includes Brock [1982], Cox et al. [1985], Cochrane [1991],
and Cochrane [1996]. Studies that consider jumps in the production process are Ahn and
Thompson [1988], Bates [1988], and Bates [1991]. Pan [2002], Liu et al. [2003], and Zhang
et al. [2012] also include jumps in a production economy but in a partial equilibrium setting
as they only study the price of derivatives and disregard the price of assets. In addition,
there are several equilibrium studies in an exchange economy based on consumption asset
pricing, where aggregate endowment is stochastic such as, among others, Lucas Jr [1978],
Breeden [1979], and more recently Bates [2008], and Santa-Clara and Yan [2010].

By contrast, the stochastic dominance literature is slimmer, even though it appeared more
than 30 years ago. It was first introduced by Perrakis and Ryan [1984], Levy [1985], Ritchken
[1985], and subsequently extended by Perrakis [1986] and Ritchken and Kuo [1988]. More re-
cently Constantinides and Perrakis [2002] and Constantinides and Perrakis [2007] extended
it to incorporate proportional transaction costs, an extension that was tested empirically
in Constantinides et al. [2009] and Constantinides et al. [2011]. Jump diffusion valuation
elements for a specific type of insurance derivatives were applied in the SD context in Per-
rakis and Boloorforoosh [2013], while Oancea and Perrakis [2014](OP, 2014) established the
formal equivalence of SD to the Black and Scholes [1973] model under simple diffusion asset
dynamics for both index and equity options.

This paper presents the SD theory for index options in a general jump diffusion context
and examines the equilibrium models’ results within the more general framework of SD. We
derive upper and lower bounds on option prices based on the parameters of the physical
distribution of the underlying return process. We then compare these bounds to equilibrium
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models’ predicted option values and the associated risk neutral volatility and mean return of
the underlying asset as functions of the relative risk aversion (RRA) parameter. We use jump
diffusion asset dynamics parameters extracted from available econometric studies in the S&P
500 underlying index market. We rely on the fact that the SD bounds are independent of
RRA but rely, on the other hand, on the ex-dividend mean return of the underlying asset;
as we point out, for the most frequently used underlying, the S&P 500 index, that range is
widely assumed to lie within known limits. Further, we observe that the derived bounds are
relatively insensitive to the parameters of the jump component provided the total volatility
is kept constant; this is important because there is a large variability in the estimates of
these parameters depending on the time span of the data.1

By contrast, the econometric literature has presented widely divergent values of the RRA
coefficient. Even within the option pricing models and associated empirical research the
RRA coefficient varies widely between studies and even within the same study.2 As we
show in this paper, several of these high-end RRA values yield economically meaningless
results within any equilibrium model, since either the option price or the implied mean
return are beyond any reasonable values. This is true even a fortiori for RRA estimates
extracted out of the equity premium puzzle literature, which can be more than five times
as large.3 By contrast, we show that the SD bounds extracted from several econometric
estimations of jump diffusion parameters for the S&P 500 index are consistent with RRA
estimates as high as the equity premium ones, the only option price-implied estimates to
possess this property; in fact, the puzzle disappears in SD-implied RRA parameters and
associated mean returns. Last, we show that the SD bounds’ implied RRA is also consistent
with the more recent stylized models in the equity premium studies that include rare events
in a representative investor’s consumption growth in an attempt to reconcile the estimates
with observed quantities and solve the puzzle.4

The paper proceeds as follows. Section 2 presents the jump diffusion stochastic dominance
bounds as the limits of the discrete time SD bounds following a modified version of the
approach in Oancea and Perrakis [2014]. Section 3 presents a summary of the dominant
equilibrium approach and extracts the implied bounds on the RRA parameter from the SD
option bounds. Section 4 applies these results in several empirically important cases and
shows that the SD bounds can reconcile several of the apparently puzzling results derived
by earlier studies in option markets or in the equity premium puzzle literature. Section 5
concludes. In the appendix we discuss the implications of combining jump processes with
stochastic volatility (SV) diffusion, which can be handled with SD as long as the pricing of
the systematic risk of SV is done independently.5

1See, for instance, Andersen et al. [2002, Tables 3 and 6] and Tauchen and Zhou [2011, Table 4].
2See, for instance, Rosenberg and Engle [2002] and Bliss and Panigirtzoglou [2004], who find coefficients

ranging from 2 to 12 and 1.97 to 7.91 respectively.
3The reported RRA estimates are 41 for Mehra and Prescott [1985], 40 to 50 for Cochrane and Hansen

[1992], and more than 35 for Campbell and Cochrane [1999].
4See, for instance, Barro [2009], Wachter [2013], Backus et al. [2011] and Martin [2013].
5In this respect the SD approach is no different from the alternative equilibrium approach. See, for
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2 Jump Diffusion Index Option Pricing Under Stochas-

tic Dominance

The SD approach derives upper and lower bounds on the option prices in a multiperiod
discrete time context and then finds the limits of these bounds as the time partition tends to
zero. The derivation of the bounds was done in earlier studies, most recently in Oancea and
Perrakis [2014] and will not be repeated here. We summarize the results and assumptions
of the SD model before applying them to jump diffusion.

In a discrete time model trading occurs at a finite number of trading dates t = 0, 1, ..., T of
length ∆t. We consider an index as the underlying asset with current price St and return
(St+∆t − St) /St ≡ zt+∆t in each time interval. We also consider a riskless asset with return
equal to R in each time period with r as a continuous time counterpart of return, where
(1 + R) = er∆t = 1 + r∆t + o(∆t). The SD bounds are derived under the following set of
assumptions.

1. There exists at least one utility-maximizing risk averse investor (the trader) in the
economy who holds only the index and the riskless asset;6

2. This particular investor is marginal in the option market;

3. The riskless rate is non-random.7

These market equilibrium assumptions are quite general, insofar as they do not require
that all agents have the properties that we assign to traders, thus allowing a market with
heterogeneous agents and the existence of other investors with different portfolio holdings
than the trader.

Let P (zj,t+∆t) denotes the physical return distribution, assumed continuous without loss of
generality. By assumption, E [zt+∆t |St ] > R.8 Similarly, let zmin,t+∆t denotes the lowest
possible return, which is initially assumed to be strictly greater than −1. In our equilibrium,
we also define the upper (lower) bounds, Ct(St) (Ct(St)), on the admissible call option

instance, Liu et al. [2005, footnote 9].
6This assumption implies that the pricing kernel in any multiperiod equilibrium model is a monotone

decreasing function of the return.
7As discussed in Oancea and Perrakis [2014], although the constant riskless rate may not be justified in

practice, its effect on option values is generally recognized as minor in short- and medium-lived options. It
has been adopted without any exception in all equilibrium based jump-diffusion option valuation models
that have appeared in the literature. See the comments in Bates [1991, note 30] and Amin and Ng [1993,
P.891]. Bakshi et al. [1997] found that stochastic interest rates do not improve the goodness of fit in a model
featuring stochastic volatility and jumps.

8When the underlying asset is the index, as Section 2, this assumption is always true. However, when
we have stocks with negative beta and non-decreasing pricing kernel, the equivalent assumption would be
ẑn,t+∆t < R.
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prices as the reservation write (purchase) prices of the option under market equilibrium
that excludes the presence of stochastically dominant strategies. Violations of the bounds
trigger investment strategies that increase the expected utility of any trader by introducing
a corresponding short (long) option in her portfolio.

To derive the bounds Ct(St) and Ct(St) we recursively apply the Lemma 1 and Proposition
1 in Oancea and Perrakis [2014]. Note that the derivation of the bounds depends on the
convexity of the call option prices and payoff, a property which clearly holds for the jump-
diffusion dynamics as well.9

Lemma 1. If the option price Ct(St) is convex for any t then it lies within the following
bounds:

1

1 +R
ELt [Ct+∆t (St(1 + zt+∆t))] ≤ Ct(St) ≤

1

1 +R
EUt [Ct+∆t (St(1 + zt+∆t))] , (2.1)

where EUt and ELt denote respectively expectations taken with respect to the distributions

U(zt+∆t) =

{
P (zt+∆t |St ) with probability

R−zmin,t+∆t

E(zt+∆t)−zmin,t+∆t

1zmin,t+∆t
with probability E(zt+∆t)−R

E(zt+∆t)−zmin,t+∆t
≡ Q

L(zt+∆t) = P (zt+∆t|St, zt+∆t ≤ z∗t )

(2.2)

Proof. See Lemma 1 in Oancea and Perrakis [2014].

Remark 1. Note that Ut and Lt are risk neutral as EUt (1 + zt+∆t) = ELt (1 + zt+∆t) = R,
that is the distributions Ut and Lt are the incomplete market counterparts of the risk neutral
probabilities of the binomial model.

Remark 2. The distributions Ut and Lt depend on the entire distribution of the underlying
asset and not only on its volatility parameter, as in the binomial and the BSM models.

Remark 3. Note also that the upper bound pricing kernel, which is related to Ut, spikes at
zmin,t+∆t and is constant thereafter while the lower bound pricing kernel, which is related to
Lt, is zero for zt+∆t > z∗t and constant positive elsewhere. We will discuss more about these
two pricing kernels in Section 3.

9The convexity of the option with respect to the underlying stock price holds in all cases in which the
return distribution has i.i.d. time increments, in all univariate state-dependent diffusion processes, and in
bivariate (stochastic volatility) diffusions under most assumed conditions; see Merton [1973] and Bergman
et al. [1996].
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Proposition 1. Under the monotonicity of the pricing kernel assumption and for a discrete
distribution of the stock return zt, all admissible option prices lie between the upper and lower
bounds Ct(St) and Ct(St), evaluated by the following recursive expressions

CT (ST ) = CT (ST ) = (ST −K)+

Ct(St) =
1

1 +R
EUt

[
Ct+∆t (St(1 + zt+∆t)) |St

]
Ct(St) =

1

1 +R
ELt

[
Ct+∆t (St(1 + zt+∆t)) |St

] (2.3)

where EUt and ELt denote expectations taken with respect to the distributions given in (2.2).

Proof. See Proposition 1 in Oancea and Perrakis [2014].

Remark 4. Note that in the special case where a stock can become worthless within a single
elementary time period (t, t + ∆t) we have zmin,t+∆t = −1, irrespective of the underlying
index dynamics. In such a case the upper bound distribution is no longer risk neutral and
can be extracted by (2.4) where the expectation is taken with respect to the actual distribution
P (zt+∆t |St ) rather than the upper bound distribution in (2.2).

CT (ST ) = (ST −K)+

Ct(St) =
EP
[
Ct+∆t (St(1 + zt+∆t)) |St

]
E [1 + zt+∆t |St ]

(2.4)

This important special case yields a loose upper bound on the call option prices but also a
convenient closed form solution when the underlying return follows jump-diffusion dynamics.

We model the returns as a sum of two components, one of which will tend to a diffusion with
a probability of 1 − λt∆t, and the other to a jump process. Therefore, the return dynamic
has the following form.10

zt+∆t =

{
[µ(St, t)− λtk] ∆t+ σ(St, t)ε

√
∆t with probability (1− λt∆t)

[µ(St, t)− λtk] ∆t+ σ(St, t)ε
√

∆t+ (jt − 1) with probability (λt∆t)
(2.5)

In this expression ε has a bounded distribution of mean zero and variance one, ε ∼ D(0, 1)
and 0 < εmin ≤ ε ≤ εmax, but otherwise unrestricted. With probability λt∆t there is a jump

10For simplicity dividends are ignored throughout this paper. All results can be easily extended to the
case where the stock has a known and constant dividend yield, as in index options. In the latter case the
instantaneous mean in (2.6) and (2.8) is net of the dividend yield.
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with amplitude equal to jt. This amplitude is a random variable with distribution jt ∼
Djt(µjt, σjt). Although our results may be extended to allow for dependence of both jump
intensity and jump amplitude distributions on St, we shall adopt the common assumption
in the literature that the jump process is state- and time-independent, with λt = λ, jt = j.
Similarly, it is commonly assumed that jump amplitude is log-normally distributed, implying
that J = ln(j) ∼ N(µj − 1

2
σ2
j , σ

2
j ) with µj = ln (E [j]) and k = eµj − 1. In our case we adopt

more general assumptions, with the distribution Dj restricted to a non-negative support,
so that the variable j takes values with 0 ≤ jmin but otherwise unrestricted. With this
specification the return becomes, if we set µ(St, t) ≡ µt, σ(St, t) ≡ σt

zt+∆t = (µt − λk)∆t+ σtε
√

∆t+ (j − 1)∆N, (2.6)

where N is a Poisson counting process with intensity λ. Following the proposed specification,
the return distribution in (2.5) is replaced with the one introduced in (2.7), which will also
be used in the proofs.

zt+∆t =

{
[µt − λk] ∆t+ σtε

√
∆t with probability (1− λ∆t)

[µt − λk] ∆t+ σtε
√

∆t+ (j − 1) with probability (λ∆t)
(2.7)

In the remainder of this section we first present conditions that establish the convergence of
the return process described in (2.6) and (2.7) to a mixed jump-diffusion process. We then
extract the two option bound distributions from (2.1) and (2.2) and find their convergence to
continuous time expressions following the approach in OP (2014) for convergence of (2.6) to
a diffusion process in the absence of jumps. That approach defines a sequence of stock prices
and associated probability measures and proves that the proposed sequence converges11 in
distribution to a diffusion and its probability converges weakly to the respected probability
measure. Therefore, mean and variance of the discrete process converge weakly to the equiv-
alent parameters of the diffusion process. In the case of jump diffusion we may prove the
following lemma. Then we close this section by numerical analysis regarding the proposed
upper and lower bounds on the option prices.

Lemma 2. The discrete process described by (2.6) converges weakly to the jump-diffusion
process (2.8) as the time interval approaches to zero.

dSt/St = (µt − λk) dt+ σtdW + (j − 1) dN (2.8)

Proof. See Appendix A.

11More details on the weak convergence and its properties for Markov processes can be found at Ethier
and Kurtz [2009], or Stroock and Varadhan [2007].
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For the discrete time process (2.6), which tends to a jump-diffusion (2.8), a unique option
price can be derived by arbitrage methods alone only if we have zero volatility and the jump
amplitude takes exactly one value when a jump occurs. In such a case the process (2.6)
is binomial and it can be readily verified that the upper bound distributions, Ut, and the
lower bound distribution, Lt, coincide and the stochastic dominance approach yields the
same unique option price as the binomial jump process in Cox et al. [1979]. Otherwise, we
must examine the two bounds separately.

For the option upper bound we apply the transformation (2.2) to the discretization (2.6),
assuming first that jmin > 0. For such a process we note that as ∆t decreases, there exists
h, such that for any ∆t ≤ h, the minimum outcome of the jump component is less than
the minimum outcome of the diffusion component, (jmin − 1) < (µt∆t + σtεmin

√
∆t). Con-

sequently, for any ∆t ≤ h, the minimum outcome of the returns distribution is (jmin − 1),
which is the value that we substitute for the minimum return, zmin,t+∆t, in the transforma-
tion (2.2). With such a substitution we have now the following result for the jump diffusion
upper bound on the call option price.

Proposition 2. When the underlying asset follows a jump-diffusion process described by
(2.8) the upper option bound is the expected payoff discounted by the riskless rate of an
option on an asset whose dynamics are described by the jump-diffusion process

dSt/St =
(
r − (λ+ λUt) k

U
)
dt+ σtdWt +

(
jUt − 1

)
dNQ

t , (2.9)

where the upper bound risk-neutral jump intensity is λU = λ+ λUt and

λUt = − µt − r
jmin − 1

, (2.10)

and jUt is a mixture of jumps with intensity λ+ λUt and distribution and mean

jUt =

{
j with probability λ

λ+λUt

jmin with probability λUt

λ+λUt

E
[
jUt − 1

]
= kU = (

λ

λ+ λUt
)k + (

λUt
λ+ λUt

) (jmin − 1)

(2.11)

Proof. See Appendix B.

By definition of the convergence of the discrete time process, Proposition 2 states that
the call upper bound is the discounted expectation of the call payoff under the risk neu-
tral jump-diffusion process given by (2.9). We may, therefore, use the results derived by
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Merton [1976] for options on assets following jump-diffusion processes with the jump risk
fully diversifiable.12 Applying Merton’s approach to the jump-diffusion process given by
(2.9), we find that the upper bound on call option prices for the jump-diffusion process
(2.8) must satisfy the following partial differential equation (PDE), with terminal condition
C(ST , T ) = max {ST −K, 0}:

1

2
σ2
tS

2∂
2C

∂S2
+
[
r − (λ+ λUt)k

U
]
S
∂C

∂S
− ∂C

∂T
+ (λ+ λUt)E

U
[
C(SjUt )− C(S)

]
= rC

(2.12)

An important special case of the upper bound is when the lower limit of the jump amplitude
is equal to 0, in which case jmin = 0 and the return distribution has an absorbing state
in which the stock becomes worthless and so the lowest possible return would be z1t+∆t =
zmin,t+∆t = −1; this is the case described in the Remark 4 and equation (2.4), in which as we
saw the option upper bound is the expected payoff with the actual distribution, discounted
by the expected return on the stock. Hence, this is identical to the Merton [1976, Equation
14] case with r replaced by µ, yielding

1

2
σ2
tS

2∂
2C

∂S2
+ [µt − λk]S

∂C

∂S
− ∂C

∂T
+ λEU

[
C(SjUt )− C(S)

]
= µtC. (2.13)

If (2.13) holds and as in Bates [1991] we assume, in addition, that the diffusion parameters are
constant and the jumps amplitude has a lognormal distribution with ln(j) ∼ N(µj− 1

2
σ2
j , σ

2
j )

where k = E [j − 1] = eµj − 1, then the distribution of the asset prices given that n jumps
occurred is conditionally normal, with the following mean and variance.

µn = µ− λk +
n

T
µj

σ2
n = σ2 +

n

T
σ2
j

(2.14)

Hence, if n jumps occurred, the option price would be a Black-Scholes expression with µn
replacing the riskless rate r, or BS (S,X, T, µn, σn). Integrating (2.13) would then yield the
following upper bound, which can be obtained directly from Merton [1976] by replacing r by
µ.

12Note that we do not assume here that the jump risk is diversifiable.
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C̄ (S,X, T, µn, σn) =
∞∑
n=0

eλ
′T (λ′T )n

n!

[
SN (d1n)−Xe−µnTN(d2n)

]
d1n =

ln (S/X) + (µn + 0.5σ2
n)T√

σ2
nT

, d2n = d1n −
√
σ2
nT

ln (j) ∼ N
[
µj − 0.5σ2

j , σ
2
j

]
, j ∼ lognormal

[
eµj , e2µj

(
eσ

2
j − 1

)]
k = E [j − 1] , k = eµj − 1, ln (1 + k) = µj, λ

′ = λ (1 + k)

(2.15)

When the jump distribution is not normal, the conditional asset distribution given n jumps
is the convolution of a normal and n jumps distribution. The upper bound cannot be
obtained in closed form, but it is possible to obtain the characteristic function of the bounds
distributions. We will extract the bound’s characteristic functions, its pricing kernels, and
the respected properties in the next section. Similar approaches can be applied to the
integration of equation (2.13), which holds whenever −1 < (jmin − 1) < 0. Closed form
solutions can also be found whenever the amplitude of the jumps is fixed as, for instance,
when there is only an up or a down jump of a fixed size. A PDE similar to (2.13) also holds
if the process has only “up” jumps, in which case (jmin − 1) = 0 and the lowest return zmin

in (2.2) comes from the diffusion component. In such a case the key probability Q of (2.2)
is the same as in the case of diffusion, discussed in the proof of Proposition 2 of Oancea and
Perrakis [2014]. In this situation, equation (2.12) still holds with λUt = 0, implying that the
option upper bound is the Merton [1976] bound, with the jump risk fully diversifiable.

The option lower bound for the jump-diffusion process given by (2.8) and its discretization
(2.6) is found by a similar procedure. We apply L(zt+∆t) from (2.2) to the process (2.6) and
we prove in the appendix the following result.

Proposition 3. When the underlying asset follows a jump-diffusion process described by
(2.8), the lower option bound is the expected payoff discounted by the riskless rate of an
option on an asset whose dynamics is described by the jump-diffusion process

dSt/St =
[
r − λkL

]
dt+ σtdW +

(
jLt − 1

)
dN (2.16)

where the lower bound’s jump intensity remains the same, λkL = λ, and jLt is absolute jump
size with the truncated distribution j|j ≤ j̄t.

The mean of the relative jump size, kL, and the value of truncation boundary, j̄t, can be
obtained by solving the following equations.

µt − r = λk − λkL
kL = E (j − 1|j ≤ j̄t)

(2.17)
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Proof. See Appendix C.

Observe that (2.16) always has a solution since µt > r by assumption. The limiting distri-
bution includes the whole diffusion component and a truncated jump component. Unlike
simple diffusion, the truncation does not disappear as ∆t → 0. As with the upper bound,
we can apply the Merton [1976] approach to derive the PDE satisfied by the option lower
bound, which is given by

1

2
σ2
tS

2∂
2C

∂S2
+
[
r − λkL

]
S
∂C

∂S
− ∂C

∂T
+ λEL

[
C(SjLt )− C(S)

]
= rC (2.18)

with terminal condition CT = C(ST , T ) = max {ST −K, 0}. The solution of (2.18) can be
obtained in closed form only when the jump amplitudes are fixed, since even when the jumps
are normally distributed, the lower bound jump distribution is truncated.

Observe that the jump components in both Ct(St) and Ct(St) are now state-dependent if
µt, the diffusion component of the instantaneous expected return on the stock, is state-
dependent, even though the actual jump process is independent of the diffusion. In many
empirical applications of jump-diffusion processes, which were on the S&P 500 index options,
the unconditional estimates are considered unreliable. On the other hand there is consensus
that the unconditional mean is in the 4−6% range;13 this is reflected in the numerical results.
Observe also that for normally distributed jumps the only parameters that enter into the
computation of the bounds are the mean of the process, the volatility of the diffusion and
the parameters of the jump component. Hence, the information requirements are the same
as in the more traditional approaches, with the important difference that the mean of the
process replaces the risk aversion parameter. This difference favors the SD approach, as the
consensus that exists for the values of the mean of the process does not extend to the risk
aversion parameter, as we shall see in the next section.

We illustrate in Table 2.1 and Figure 2.1, the convergence of the bounds under a jump-
diffusion process for an ATM option with X = 100, time to maturity T = 0.25 years, and
the annual parameters: r = 2%, µ = 4%, σ = 20%, λ = 0.6, µj = −0.05, σj = 7%. In
our numerical analysis, the diffusion process was approximated by a sequence of trinomial
trees constructed according to the algorithm of Kamrad and Ritchken [1991]. The jump
process was approximated by a sequence of multinomial trees with up to 1000 time periods,
which is based on the algorithm of Amin [1993], where the jump amplitude distribution is
lognormal. For each tree, the upper and lower bound risk-neutral probability distributions
were computed by applying equation (2.2) respectively to the single-period distribution. The
two option bounds were evaluated as discounted expectations of the option payoff under the
two risk neutral distributions described in Propositions (2) and (3). In order to evaluate
the bounded jump amplitudes discussed in the case where jmin > 0, the distribution was

13See Fama and French [2002], Constantinides [2002] and Dimson et al. [2006].
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truncated to a worst-case jump return of −20%. The truncation limit is chosen to meet
the observed jump amplitude in econometric studies of jump diffusion. We also computed
the upper bound under the assumption that the return distribution is unbounded. As a
reference point and for ease of comparisons, we report the Merton [1976] price, the jump-
diffusion dynamic with diversified jump risk.

[Table 2.1 about here]

[Figure 2.1 about here]

The results presented in Table 2.1 show the jump-diffusion upper and lower bounds on the
call options price. The maximum spread between the bounds is about 4.6% of the midpoint,
comparable to the average bid-ask spread for at-the-money call options on the S&P 500
index. As expected from Proposition 2, equations (2.9)-(2.11), the upper bound is directly
related to the diffusion risk premium and therefore the spread is an increasing function of
µ−r while the lower bound is almost constant: unreported results show that the upper bound
rises from 4.59 to 4.75 and to 4.91 for a risk premium equal to 4% and 6% respectively, while
the lower bound stays approximately constant around 4.38. Unreported results also show
that the bounds are much tighter for in-the-money options and the spread decreases to less
than 2% for the base case. Similar unreported results show that the spread rises to 9.1%
for the base case parameters when the options are 10% out-of-the-money. Note that the
range of values of µ implies an ex-dividend risk premium range from 2% to 6%; a range that
covers what most people would consider the appropriate value of such a premium in many
important indexes. For the most commonly chosen risk premium of 4%, corresponding to
µ = 6%, the spread of at-the-money options is about 8.1%. This is a tight bound if we
consider the average bid-ask spread for at-the-money call options on the S&P 500 index.
This range of allowable option prices in the stochastic dominance approach is the exact
counterpart of the inability of the “traditional” arbitrage-based approaches to produce a
single option price for jump diffusion processes without an arbitrarily chosen risk aversion
parameter, even when the models have been augmented in this case by general equilibrium
considerations. We further address this issue in the next section.

A major advantage of the stochastic dominance bounds in the jump-diffusion case is their
relative insensitivity in the jump parameters, provided the total volatility is kept constant.
Table 2.2 shows the value of the bounds for the ATM options for various values of the intensity

parameter λ ranging from 0 to 1.9, with the total volatility σ2 +λ
[(
µj − 0.5σ2

j

)2
+ σ2

j

]
kept

constant to the base case value of 0.04444 by adjusting σj and the remaining parameters
are kept constant as in the base case.14 As we can see, the bounds are tight and relatively
insensitive to λ, while the spread decreases in λ from 5.24% to 4.1%. This weak dependence
of the bounds on λ is particularly important, given the difficulty of estimating the parameters
and the impossibility of estimating meaningful option prices by the “traditional” method for

14We discuss the choice of the range of intensity values in the next section.
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all but the lowest values of the ranges of λ and the admissible risk aversion parameters.15

[Table 2.2 about here]

3 Equilibrium Analysis

In this section we consider the traditional approach to the extraction of the risk neutral
distribution based on general equilibrium in the production economy, in which the underlying
returns follow a jump-diffusion process, and compare its results to the stochastic dominance
bounds of the previous section. Since the pricing kernel links the physical and risk-neutral
densities in a general equilibrium setup, we derive the upper and lower bounds’ pricing
kernels in the SD approach, which are independent of investor’s preferences with respect to
rare events. We then use these kernels to restrict the preferences of the representative investor
in the general equilibrium approach and extract appropriate bounds on the preference of the
representative investor, which depend on option moneyness and time to maturity. Finally, we
compare the SD implied bounds on the relative risk aversion (RRA) coefficient with those
commonly used in the option pricing literature and those extracted from macroeconomic
data, mostly based on joint consumptions and options data.

We summarize in our online appendix the general equilibrium analysis in production economy
following a jump diffusion process as in (2.8), with a representative investor of the CRRA-
type, with γ denoting the RRA coefficient. Of particular interest for our purposes are the
expressions for the equilibrium pricing kernel πt, its particular expression under the CRRA
assumption, and the corresponding parameter mapping from the physical or P -distribution to
the risk neutral Q-distribution. These mappings satisfy the requirements that Et [d (πtSt)] =
0 (πtSt should be a martingale), and Et [dπt/πt] = −rdt. The derivation of the following
expressions can be found in several studies, some of them derived under slightly more general
conditions.16

The general expression for the pricing kernel process that satisfies the martingale restriction
in a general equilibrium model with a CRRA representative investor follows the dynamics
defined in equations (3.1) and (3.2).

dπt/πt = (−r − λE [jπt − 1]) dt− ηdWt + (jπt − 1) dNt, (3.1)

where η, the risk premium of the diffusion component, is proportional to volatility and jπt −1

15For instance, for a risk aversion coefficient of 7, the mid-range of the Rosenberg and Engle [2002]
estimates, and for λ = 10 the total volatility of the option rises from 26.3% to 93% and becoming explosive
on higher values of RRA and/or jump parameters.

16See, for instance, Bates [1991], Bates [2006], Liu et al. [2005] and Zhang et al. [2012].
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is the relative jump amplitude of the pricing kernel process. In the particular case of the
CRRA investor with RRA equal to γ we have

η = γσ, jπt = j−γt . (3.2)

Applying the definition of the pricing kernel on the basis of the martingale condition, the
correspondence between the physical and risk neutral jump distribution parameters for the
CRRA investor is found to be equal to

λQ = λE
[
j−γt
]
,

kQ =
E
[
(jt − 1) j−γt

]
E
[
j−γt
] .

(3.3)

Note also that in this model the total equilibrium risk premium must be equal to summation
of the diffusive risk premium and the jump risk premium, µt − r = γσ2 + λk − λQkQ.

In the case of lognormal jump amplitude ln (jt) ∼ N
[
µj − 0.5σ2

j , σ
2
j

]
, we have the following

transformations.

λQ = λ exp
[
− γµj +

1

2
γ (γ + 1)σ2

j

]
(3.4)

kQ = EQ
[
jQt − 1

]
= exp

[
µj − γσ2

j

]
− 1 = exp

[
µQj
]
− 1 (3.5)

With these relations the risk neutral jump diffusion dynamics become now

dSt/St =
[
r − λQEQ

[
jQt − 1

]]
dt+ σtdW

Q
t +

[
jQt − 1

]
dNQ

t (3.6)

Equations (3.1)-(3.6) summarize and describe completely the mapping from the P - to the risk
neutral Q-distribution for a general equilibrium analysis of jump diffusion derivatives pricing
given the existence of a representative CRRA investor, the only case that has appeared so
far in the literature. The major drawback of this mapping is its dependence on the RRA
parameter γ, for which there are widely differing estimates in the financial literature, reviewed
further on in the next section. Since the stochastic dominance concept is much more general
than equilibrium, we conclude now our theoretical analysis by deriving the limits on γ implied
by the SD bounds of the previous section.

Embedding the SD bounds to an equilibrium model, we note that the pricing kernel equation
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(3.1) should still hold, but the absence of a representative CRRA investor implies that (3.2)
no longer holds. On the other hand, Propositions 2 and 3 introduce two risk-neutral distri-
butions that yield the upper and lower option bounds when the underlying asset follows the
jump-diffusion process. The violation of any of these two bounds implies that any trader can
improve her utility by introducing the corresponding short or long option positions in her
portfolio. A key factor in this estimation as compared to the equilibrium expressions is the
fact that the total risk premium µt − r is an exogenous parameter, rather than an endoge-
nously determined sum of the diffusive and jump risk premium equal to γσ2 +λk−λQkQ in
the equilibrium model. Since utility maximization given the P -distribution (hence, the total
risk premium) is a first step in the equilibrium approach, the SD bounds should be satisfied
in this latter class of equilibrium models. The next result, part of which is obvious from
(2.9)-(2.11) and (2.16)-(2.17) and the rest is proven in the appendix, helps establish bounds
on the admissible equilibrium model values of γ given the P -distribution.

Proposition 4. When the underlying asset follows a jump-diffusion process described by
(3.6) the option bounds’ corresponding risk neutral parameters are:

For the upper bound:

λQ = λU = λE [jπt ] = λ+ λUt = λ− µt − r
jmin − 1

,

kQ = kU = EQ
[
jQt − 1

]
=

1

E [jπt ]
× E [(jt − 1)× jπt ] =

λ

λ+ λUt
k +

λUt
λ+ λUt

(jmin − 1) .

(3.7)

For the lower bound:

λQ = λL = λ,

kL = EQ
[
jQt − 1

]
=

1

E [jπt ]
× E [(jt − 1)× jπt ] = E (jt − 1|j ≤ j̄t) .

(3.8)

If the jump amplitude is a truncated lognormal, the characteristic function of the jump com-
ponent’s distribution is eλT (fj(ϕ)−1), where fj(ϕ) ≡ E(jiϕ) is the characteristic function of the
jump amplitude. In such a case the means and variances of the return distributions under the
upper and lower bounds’ Q-distributions are given by expressions (D.9)-(D.10) and (D.17)-
(D.18) of the Appendix D and their truncated counterparts are given by (D.11)-(D.12) and
(D.19)-(D.20). �

In the next section we explore the equilibrium expressions summarized and/or derived in
this section in order to find implicit bounds on the admissible values of the RRA parameter
γ given the SD bounds defined on the basis of the independently estimated P -distribution
parameters. The sources of these estimates include option pricing studies containing jump
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diffusion and studies associated with the well-known equity premium puzzle, initially iden-
tified by Mehra and Prescott [1985].

4 RRA Values Implied by Stochastic Dominance

An exact expression giving the limits of the RRA compatible with the boundary risk neutral
distributions of Propositions 2 and 3 is not available in closed form, especially in view of
the fact that the transformed jump amplitudes are not lognormal. Such limits can only
be defined numerically for a given set of parameters. In what follows we first find these
limits for our base case and then examine several parameter values extracted from existing
econometric studies of the S&P 500 returns’ P -distribution. Figure 4.1 shows the admissible
range of values of γ in the case of ATM options for our base case parameter values and
for two alternative upper bounds, one based on the entire lognormal distribution jmin = 0
and the other on a lognormal distribution truncated at a worst-case return of −20%, i.e.
jmin = 0.8. We find the implied RRA using the Bates [1991] jump-diffusion model to derive
the equilibrium call option prices for a continuum of relative risk aversion coefficients up to
10.

[Figure 4.1 about here]

An alternative approximate interval of admissible values of γ can be found by assuming
that the value of the option varies approximately with the return volatility, V arQ [dS/S],
where the risk neutral distributions are given by (3.6), (2.9) and (2.16), respectively for
the equilibrium, the upper bound, and the lower bound distributions. Since the diffusion
component is the same for all three cases, this interval boils down to V ar

[(
jLt − 1

)
dNL

t

]
≤

V ar
[(
jQt − 1

)
dNQ

t

]
≤ V ar

[(
jUt − 1

)
dNU

t

]
with the jump distributions given by (3.4)-

(3.5), (3.7) and (3.8) for the Q, U , and L cases respectively. Figure 4.2 shows the equilibrium
implied jump variance for ATM options as a function of γ, together with its two limits, the
P -distribution (γ = 0) and the upper bound.

[Figure 4.2 about here]

Both Figures 4.1 and 4.2 tell a consistent story. First of all, with respect to the SD lower
bound, the only admissible value of a relative risk aversion coefficient for CRRA investor
in Figure 4.1 is negative and equal to −1.72 for our base case, violating the risk aversion
principle for the representative investor. This is not a surprising SD result, given that the
bound lies below the Merton value, where the jump risk is systematic. The Merton prices
are comparable to the Bates [1991] jump-diffusion prices if we assume that the representa-
tive investor is risk-neutral; that is the coefficient of the RRA is zero. More to the point,
several econometric studies of S&P 500 index options based on the equilibrium approach
and CRRA utilities have persistently documented negative values of γ, starting with Jackw-
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erth [2000] and including Aıt-Sahalia and Lo [2000] and especially Ziegler [2007]. The latter
study examined various potential explanations of this perverse result without reaching any
definitive conclusion.17 The SD lower bound results are possible explanations of these neg-
ative γ findings, even though the implied pricing kernel is increasing. What they imply is
that the equilibrium model cannot account for several risk neutral jump diffusion distribu-
tions compatible with the underlying P -distribution and the much weaker SD assumption
of a declining pricing kernel. Since our purpose is the analysis of the admissible equilibrium
model solutions within the SD framework, we shall ignore hereafter the SD lower bound and
assume that the lowest SD-compatible value of γ is 0.

We now turn to the SD upper bound and restrict ourselves to the positive range of implied
RRA. As illustrated in Figure 4.1, in our base case the maximum SD-admissible γ is 5.49
for the truncated lognormal, rising to almost 7 for the case of jmin = 0, under which there is
a positive probability that the index will become worthless in the next 90 days. The implied
γ is significantly larger on the basis of the volatility bounds, 6.59 for the truncated and 7.24
for the full lognormal jump amplitude. Note that, unlike the equilibrium model, the SD
upper bound does not imply the same γ for all degrees of moneyness, as shown in Figure 4.3.
Nonetheless, the range of upper bound-implied γ is relatively narrow, starting from 7.1 for
2% OTM up to 7.7 for 2% ITM. Unreported results show a similar narrow range of relative
risk aversion also holds when the moneyness is kept constant but the time to expiration is
varied from 0.083 to 1 year for the base case parameters.

[Figure 4.3 about here]

[Table 4.1 about here]

Table 4.1 shows the equilibrium option prices for our base case parameters and for the
RRA range of Figures 4.1 to 4.3. The table also shows the corresponding implied mean µ
and the risk neutral parameters of the jump component λQ and kQ from (3.4)-(3.5) for the
continuum of RRA.18 It is clear that the SD-restricted range of admissible RRA values needs
to be tightened even further in order to accommodate reasonable values of the ex-dividend
expected excess return, which is taken equal to 2% in our SD base case.

[Table 4.2 about here]

[Table 4.3 about here]

The SD implied upper bound on the relative risk aversion is consistent among a wide range
of moneyness and time to maturity, as reported in Tables 4.2 and 4.3. Following the base

17The Ziegler [2007] studies potential explanations for the U-shaped and negative implied risk aversion
patterns include (I) preference aggregation, both with and without stochastic volatility and jumps in returns,
(II) misestimation of investors’ beliefs caused by stochastic volatility, jumps, or a Peso problem, and (III)
heterogeneous beliefs.

18Implied mean return is calculated based on the jump diffusion equilibrium risk premium, µt − r =
γσ2 + λk − λQkQ, in Section 3.
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case scenario, the 2% OTM call option reduces the SD implied upper bound on the RRA
from 5.49 to 5.46 and the 2% ITM call option increases the upper bound on the RRA from
5.49 to 5.58. Similarly, as we increase time to maturity from one month to one year, the
SD upper bounds on the call option prices increase, as expected, from 2.55 to 9.73, but
the implied upper bound on the risk aversion increases correspondingly from 5.13 to 5.74.
Hence, the implied upper bound on the RRA is relatively stable across a reasonable range
of moneyness and time to maturity.

When the ex-dividend risk-premium increases from 2% to 4% we expect an increase in the
SD upper bound on the RRA due to the direct relation between the SD option bounds and
the mean µ of the returns process. Nonetheless, the relative insensitivity of the SD implied
bound on RRA is still robust across the same range of moneyness and time to maturity,
as shown in Tables 4.1 and 4.2 for the upper bound. As for the lower bound, the implied
RRA is always zero based on the Merton jump-diffusion model irrespective of the level of
risk premium and the option moneyness or time to maturity.

Since the SD-implied RRA is parameter dependent, we examine it for the parameter val-
ues that were estimated in earlier studies. Such studies fall into two categories, option
market-based and macro-finance studies attempting to explain the equity premium puzzle.
In empirical tests of the former category, a jump diffusion model is often included in a nested
model that also includes stochastic volatility;19 only a few of these studies are reviewed here.
Bates [1991] applied the nested models to Deutsche mark currency options, and in a subse-
quent study Bates [2000] to S&P 500 futures options, while Pan [2002] and Rosenberg and
Engle [2002] examined S&P 500 index options, and Bliss and Panigirtzoglou [2004] FTSE
100 and S&P 500 index futures options. In these tests the parameters of the implied risk
neutral distribution are extracted from cross sections of observed option prices and attempts
are made to reconcile these option-based distributions with data from the market of the un-
derlying asset. All studies stress the importance of jump risk premia in these reconciliation
attempts.

Such reconciliations have not always been crowned with success, with the result that reported
estimates of γ vary widely between studies. They range from an arbitrarily chosen value of 2
for Bates [1991] to 3.94 estimated by the same author in Bates [2006] using both return
and option data, to a value up to 10 by Liu and Pan [2003], where they quantify the
gain of including derivatives in portfolio optimization in the presence of jump. Bliss and
Panigirtzoglou [2004] choose the risk aversion parameter between 3.37 and 9.52 to produce
subjective densities that best fit the distributions of realized values. In a bootstrap estimate
of the RRA based on observed 5-week S&P 500 options they report a minimum of −1.34
and a maximum of 8.17 for the relative risk aversion; note the approximate consistency of

19The equilibrium model does not allow stochastic volatility and jumps in linking the P− and Q-
distributions. Although Duffie et al. [2000] have presented option prices under general Q-distributions
containing both stochastic volatility and jumps, to our knowledge the only stochastic volatility pricing ker-
nel was derived by Christoffersen et al. [2013] in the context of the Heston [1993]. For stochastic volatility
in the SD context see the Appendix E.
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these varying estimates with the γ limits implied from our SD bounds shown in Figure 4.1
and Table 4.3 for the same maturity and a 4% risk premium. Liu et al. [2005] adjust the risk
aversion coefficient to 3.49 to match an observed total equity premium when the underlying
process follow jump-diffusion dynamic while the representative agent is averse not only to
diffusive and jump risk but also to uncertainty aversion. However, as they point out, the
data implied RRA coefficient has to be considerably larger than 3.49 if they only incorporate
diffusive risk and jump risk in justifying the pronounced smirk pattern. More recently, Zhang
et al. [2012] fit a jump-diffusion model with constant jump size to the underlying index data
and show that a RRA coefficient of the order 2.134 is required to meet the observed risk-
premium of the order 6%. However, they did not discuss if the proposed level of risk aversion
is consistent with the observed option prices or even consistent with the jump risk premium
required to match the observed premium.

Although the risk aversion values in these studies are mostly consistent with the SD implied
bounds on RRA, the SD results are extracted uniquely from estimates of the underlying
returns P -distribution. Compared to the equilibrium approach’s estimates, they require
an additional parameter, the total risk premium µt − r, but do not require knowledge of
γ. Unlike γ, there are reliable historical estimates of µt, even the largest of which defines
tighter bounds on γ than those are available from empirical studies that rely on the option
market. They can, therefore, verify the consistency of the two markets in a more reliable
manner than the equilibrium approach. Note that the inconsistencies and inability of the
equilibrium approach to reconcile the evidence of the underlying and option markets has
already been mentioned in earlier studies.20

A key issue in all the jump diffusion option pricing models is the accurate estimation of the
parameters, since the Q-distributions for the option market fluctuate widely even for small
differences in the parameter estimates. Further, the total risk premium does not appear
explicitly and must be estimated from γ and the P -parameters, equal to γσ2 +λk−λQkQ as
in (3.4) and (3.5). Since this premium is also a byproduct of the P -estimation, a successful
reconciliation of the two markets must also verify the consistency of the premium with the
value of γ used in the option market valuation. This is generally not done in most studies.

[Table 4.4 about here]

[Figure 4.4 about here]

We carry out this exercise for several econometric estimations of jump diffusion parameters
shown in Table 4.4, whose results differ substantially not only between studies but also
between differing data series within the same study. From the parameters estimate, we
extract the appropriate RRA coefficient to match the reported P -distribution excess return
in column 3 of Table 4.4. We find that γ should be below 2 in Andersen et al. [2002],
and Eraker et al. [2003], and below 2.5 in Ramezani and Zeng [2007] and Honore [1998].

20See Eraker et al. [2003, P. 1294], Broadie et al. [2007], Broadie et al. [2009], and more recently Ross
[2015].
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Therefore, none of the extracted underlying jump diffusion parameters can accommodate
relative risk aversion coefficient above 2.5. Figure 4.4 shows the relationship between γ and
the corresponding jump diffusion equilibrium risk premium γσ2 + λk − λQkQ.

The SD implied bounds on the relative risk aversion can also provide information on the
RRA coefficient extracted in macro finance studies. The RRA coefficients used in the option
pricing literature are much lower than those of the equity premium puzzle studies, where
Mehra and Prescott [1985] report a coefficient of 41, Cochrane and Hansen [1992] report
RRA in the range of 40− 50, and Campbell and Cochrane [1999] expects a value more than
35,21 although some argue that risk aversion this large implies implausible behavior along
other dimensions;22 note that these studies relied on pure diffusion dynamics of consumption
growth. Table 4.5 provides a partial explanation for this discrepancy.

[Table 4.5 about here]

In Table 4.5 we use the jump diffusion parameters of Table 4.4 to estimate the SD upper
bound option prices (column 3) and then extract the implied upper bound relative risk aver-
sion (column 4) by comparing these option upper bounds with the equilibrium option prices
from the Bates [1991] model. Observe that for all of these parameter estimates the upper
bound RRA values are similar to the ones found in the equity premium puzzle literature,
the only option pricing model that can achieve such high γ values.

From the upper bound γ in column 4 we estimate the implied equity premium (column
5), using the Mehra and Prescott [1985] estimates. In the absence of rare events affecting
consumption for CRRA investors, we have ln (Et [Re,t+1]) − lnRf = γσ2

∆ lnC ,23 where the
implied riskless rate Rf is found from the equation lnRf = − ln β + γµ∆ lnC − 0.5γ2σ2

∆ lnC ,
and where β = 0.99, µ∆ lnC = 0.01919 and σ2

∆ lnC = 0.0011767.24 As we see, such a risk
premium estimate is significantly lower than the observed risk premium (column 6) in four
out of the six cases. This is, in fact, the equity premium puzzle as extensively addressed by
different authors.25

We now consider the equity premium puzzle from the SD perspective. Recall from the
discrete time analysis that for any partition of the time to expiration, and by extension at
the continuous time limit, the SD bounds are no arbitrage bounds, implying that if the option
prices fail to lie between the bounds, any risk-averse investor can increase her expected utility
by choosing a dominant portfolio containing the underlying, the riskless asset and a long or

21See also the survey article by Kocherlakota [1996]
22See Campanale et al. [2010]
23These estimates remained essentially unchanged when the data was extended to 2005 and then to 2009.

See Barro [2006, Section 1.F] and Backus et al. [2011]. This dataset has been used widely in most recent
studies of the equity premium.

24This is equivalent to the distribution of real consumer expenditure with mean of 0.02 and standard
deviation of 0.035.

25A good summary of the puzzle and its possible resolutions is in Cochrane [2001, Chapter 21], Mehra
and Prescott [2003] and Mehra [2007]. The expressions are in Mehra and Prescott [2003].
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short option position in a conventional second-degree stochastic dominance comparison.26

The SD assumptions then imply that there is at least one class of agents who increases their
expected utility by such arbitrage trading. Since the SD upper bound gives the highest
admissible option price implied by the P -distribution parameters, this price is equivalent to,
ceteris paribus, the largest possible RRA coefficient compatible with the preferences of the
representative option trader in an equilibrium model. Column 4 in Table 4.5 reports this
upper bound RRA. Although we used the highest admissible risk aversion from an option
trader’s perspective, columns 5 and 6 in the same table restate that we still observe the equity
premium puzzle, as the corresponding equilibrium premium is lower than the observed one
in most cases. Since the SD implied upper bound is a no arbitrage bound, one explanation
for the above puzzle may be that index options are overpriced from the option trader’s
perspective, as claimed in several empirical studies. Alternatively, as the option implied risk
premium is forward looking, we can consider it as an alternative to the Ross [2015] Recovery
Theorem.

Last, we explore the consistency of the upper bound-implied RRA with the results of more
recent equity premium puzzle studies that consider the presence of fat tails in the con-
sumption distribution.27 In particular Barro [2006] has shown that rare disasters may ac-
count for high equity risk premia by using the international consumption dataset while
maintaining a tractable framework of a representative agent with time-additive isoelas-
tic preferences.28 In his model the equity premium is given by ln (Et [Re,t+1]) − lnRf =
φγσ2

∆ lnC + λEt
[(
e−γJ − 1

) (
1− eφJ

)]
,29 where φ = 1 in this case and J is the amplitude of

the consumption disaster risk, assumed lognormal, ln J ∼ N(µj, σ
2
j ).

As a final exercise we apply the above equity premium equation using the upper bound RRA
for the jump diffusion parameter estimates of Eraker et al. [2003], reported in Table 4.4. The
implied equity premium in the presence of consumption disaster is 8.95, a level of premium
that is above the observed 7.5% premium evaluated under the assumption that the risk free
rate is 5%, but is close to the observed 8.5% premium if that rate is assumed to be a more
realistic 4%.30 Unfortunately, the implied equity premium is extremely sensitive to the jump
parameter estimates.31 Considering the noticeable difference in equity premium based on
the calibration assumed, it is difficult to make a conclusive decision regarding the implied
equity premium in the presence of rare disasters unless there is a consensus opinion about

26See Oancea and Perrakis [2014] .
27See, for instance, Barro [2006], Wachter [2013] and Martin [2013].
28See Weitzman [2007], Jurek [2014], Barro and Ursua [2008], Gabaix [2008], Gourio [2008a], Gourio

[2008b], Barro [2009], Gabaix [2012], and Wachter [2013] to name a few.
29This is the continuous-time counterpart of Barro [2006] reproduced in Wachter [2013, Section I.G and

Appendix C].
30We assume that the consumption disaster has the mean, volatility, and intensity equal to 0.3, 0.15, and

0.01 respectively, following Backus et al. [2011].
31See the comments in Martin [2013, Section 2]. Similarly Ross [2015] describes the very low probability

of catastrophic events and the extensive impact of minor changes in that perceived probability on asset
prices as a dark matter of finance. For this reason we do not extend the exercise to the other jump diffusion
estimates of Table 4.4.
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the parameters of consumption’s disaster distribution.

5 Extensions and Conclusions

The results presented in Section 2 yield bounds for jump-diffusion index option prices that
are relatively simple to compute and reasonably tight for most empirically important cases.
The alternative equilibrium approach that uses an assumed value of the relative risk aver-
sion parameter to price the option implies a much wider and at times unrealistic range of
admissible option prices if that parameter is allowed to vary over its relevant range, from 1
to more than 40 as implied by the equity premium puzzle studies. Further, the SD approach
does not require the strong assumptions of the equilibrium approach such as the existence of
a representative investor with constant RRA, even though it is capable of accommodating
this case as well. In addition, the bounds can also accommodate state-dependent diffusion
parameters, even though their computation would be difficult. Last but not least, the SD
approach does not assume simultaneous equilibrium in the options and the underlying asset
markets, an equilibrium that is not realistic if the options do not trade in an organized or a
liquid market, as with catastrophe derivative instruments, where the instruments trade over
the counter and the underlying process follows rare-event dynamics.32

The discrete time approach of the bounds estimation allows several significant extensions
to jump-diffusion option pricing. Thus, the valuation of American options is obvious, due
to the discrete nature of the bounds. Second, the incorporation of proportional transaction
costs is available for some (but not all) European or American option cases following the
general results of Constantinides and Perrakis [2002] and Constantinides and Perrakis [2007];
see, for instance, Proposition 1 in Constantinides and Perrakis [2002] for the upper bound
of a call option. Last, extensions to the case of equity options are also feasible following
an adaptation of the limiting SD approach for simple diffusion as in Oancea and Perrakis
[2014].

32See Perrakis and Boloorforoosh [2013].
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Appendices

A Proof of Lemma 2

We prove the convergence of the discretization (2.6) in the i.i.d. case33 where µt − λk = µ,
σt = σ, jt = j. Convergence in the non-i.i.d. case follows from the convergence criteria
for stochastic integrals, presented in Duffie and Protter [1992]. It is shown in an appendix,
available from the authors on request.

The characteristic function of the terminal stock price at time T for a $1 initial price under
the jump-diffusion process (2.8) is

ϕjD(ω) = exp
[
iωµT − ω2σ2T

2

]
exp (−λT )

∞∑
N=0

(λT )N

N !
[ϕj(ω)]N

= exp
[
iωµT − ω2σ2T

2

]
exp [λT (ϕj(ω)− 1)] ,

(A.1)

where ϕj(ω) is the characteristic function of the jump distribution. The first exponential
corresponds to the diffusion component and the second to the jump component.

The characteristic function of the discretization (2.6) is

ϕ(ω) = (λ∆tϕj(ω) + 1− λ∆t)
[
exp(iωµ∆t)ϕε(ωσ

√
∆t)
]
, (A.2)

where ϕε(ω) is the characteristic function of ε.34 Since the distribution of ε has mean 0 and
variance 1, we have

E [ε] = 0 = iϕ′ε(0),
E
[
ε2
]

= 1 = −ϕ′′ε (0).

By the Taylor expansion of ϕε(ω), we get

33The proof is similar to that of Theorem 21.1 in Jacod and Protter [2003].
34If instead of (2.6) we have a mixture of the diffusion and jump components then the characteristic

function becomes ϕ(ω) = λ∆tϕj(ω) + (1 − λ∆t)
[
exp(iωµ∆t)ϕε(ωσ

√
∆t)
]
. The multiperiod convolution,

however, still converges to (A.3).
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ϕ(ω) = (λ∆tϕj(ω) + 1− λ∆t)

[
exp(iωµ∆t)

[
1− ω2σ2∆t

2
+ ω2σ2∆t h

(
ωσ
√

∆t
)]]

,

where h(ω) → 0 as ω → 0. The multi-period convolution has the characteristic function
ϕ(ω)(T/∆t). Taking the limit, we have

lim
∆t→0

[ϕ(ω)]T/∆t = lim
∆t→0

exp

[
T

∆t
ln (λ∆tϕj(ω) + 1− λ∆t)

+
T

∆t
ln

[
exp(iωµ∆t)

[
1− ω2σ2∆t

2
+ ω2σ2∆t h

(
ωσ
√

∆t
)]]]

= exp

[
λT (ϕj(ω)− 1) + iωµT − ω2σ2T

2

]
(A.3)

after applying l′Hôpital′s rule. Equation (A.3) is, however, the same as equation (A.1), the
characteristic function of (2.8). So, Levy’s continuity theorem 35 proves the weak convergence
of (2.6) to (2.8), QED. �

Another way to characterize the limit process is its generator. Denote by ZD,t the diffusion
component and by Zj,t the jump component of the return process. Therefore, we have

lim
∆t→0

E [f(St+∆ t, t+ ∆t)]− f(St, t)

∆t
=

= lim∆t→0
E[f(St(1+ZD, t+∆t), t+∆t)]−f(St, t)

∆t
+ λ∆t

E[f(St(1+Zj, t+∆t), t+∆t)]−f(St, t)

∆t

= (µt − λk)S ∂f
∂S

+ 1
2
σ2
tS

2 ∂2f
∂S2 + λE [f(Sj)− f(S)] ,

(A.4)

which gives us the generator of the price process described by (2.8), QED. �

B Proof of Proposition 2

We follow the proof of Proposition 2 in Oancea and Perrakis [2014] and consider the same
multiperiod discrete time option bounds, obtained by successive expectations under the risk-
neutral upper bound distribution. We then seek the limit of this distribution as ∆t → 0.
The multiperiod upper bound distribution is given by

35See for instance Jacod and Protter [2003, Theorem 19.1].
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U(zt+∆t) =

{
P (zt+∆t |St ) with probability

R−zmin,t+∆t

E(zt+∆t)−zmin,t+∆t

1zmin,t+∆t
with probability E(zt+∆t)−R

E(zt+∆t)−zmin,t+∆t
≡ Q

, (B.1)

where P (zt+∆t |St ) is the physical probability of return at each state at time t + ∆t and
1zmin,t+∆t

is the physical probability for the lowest possible return. Assuming jump-diffusion
dynamic as (2.8), the minimum outcome of the returns distribution is jmin − 1, as discussed
in Section 2. Since zmin,t+∆t = jmin− 1 the martingale transformation for the U -distribution
clearly does not involve the diffusion component, which stays the same. The U -distribution
is now a convolution of the diffusion component and a jump component with amplitude equal
to jmin − 1 and j − 1 with the probabilities of Q and 1−Q respectively where Q is defined
by the following equation.

Q ≡ E(zt+∆t)−R
E(zt+∆t)− zmin,t+∆t

=
E(zt+∆t)− r∆t

E(zt+∆t)− (jmin − 1)

=
µt∆t− r∆t

µt∆t− σmax(|ε|)
√

∆t− (jmin − 1)
= − µt − r

(jmin − 1)
∆t = λUt∆t,

(B.2)

where λUt is defined in Proposition 2.

Observe that λUt is always positive since (jmin − 1) < 0 and E(zt+∆t) > r∆t. Hence,
considering the multiperiod upper bound distribution (B.1) and equation (2.6), the discrete
time upper bound process is as follows:

zt+∆t =

{
zD,t+∆t + (j − 1)∆N with probability 1− λUt∆t
zD,t+∆t + (jmin − 1)∆N with probability λUt∆t

. (B.3)

The outcomes of this process and their probabilities are as follows:

zt+∆t =


zD,t+∆t with probability (1− λ∆t)(1− λUt∆t)
zD,t+∆t + (j − 1) with probability λ∆t(1− λUt∆t)
zD,t+∆t + (jmin − 1) with probability λUt∆t

. (B.4)

By removing the terms in o(∆t), the upper bound process outcomes become

zt+∆t =

{
zD,t+∆t with probability 1− (λ+ λUt)∆t
zD,t+∆t + (jUt − 1) with probability (λ+ λUt)∆t

. (B.5)

where jUt is given by (2.11). This process, however, corresponds to (2.9), QED. �
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The generator of the price process, which is also reflected in equation (2.12), is

AUf =
1

2
σ2
tS

2 ∂
2f

∂S2
+
[
r − (λ+ λUt)k

U
]
S
∂f

∂S
+
∂f

∂T
+ (λ+ λUt)E

U
[
f(SjUt )− f(S)

]
(B.6)

,QED. �

C Proof of Proposition 3

The proof is very similar to those of Lemma 2 and Proposition 2. Assuming, for simplicity,
that both ε and j have continuous distributions, we may apply the multiperiod lower bound
distribution, given by

L(zt+∆t) = P (zt+∆t |St , zt+∆t ≤ z∗t ) such that E (zt+∆t |St , zt+∆t ≤ z∗t ) = R. (C.1)

From the convergence of return process without the jump component to the diffusion pro-
cess,36 it is clear that as ∆t → 0 all the outcomes of the diffusion component will be lower
than j̄t. Therefore, the limiting distribution will include the whole diffusion component and
a truncated jump component. The maximum jump outcome in this truncated distribution
is obtained from the condition that the distribution is risk neutral, which is expressed in
(2.17). We observe that the lower bound distribution over (t, t+ ∆t) is the sum of the diffu-
sion component and a jump of intensity λ and log-amplitude distribution jLt , the truncated
distribution {j|j ≤ j̄t}.

zt+∆t =

{
zD,t+∆t with probability 1− λ∆t
zD,t+∆t + (jLt − 1)∆N with probability λ∆t

(C.2)

By Lemma 2 this process converges weakly for to the jump-diffusion process (2.16), QED.�

The generator of the price process is

ALf =
1

2
σ2
tS

2 ∂
2f

∂S2
+
[
r − λkL

]
S
∂f

∂S
+
∂f

∂T
+ λEL

[
f(SjLt )− f(S)

]
(C.3)

36More detail can be find in Oancea and Perrakis [2014] and Merton [1992]
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which appears in equation (2.18), QED. �

D Characteristic Function and Moments of Returns

Dynamic

When the underlying process under P is defined by equation (2.8), then log return process
is

Ln (St/S0) =
[(
µ− 1

2
σ2 − λk

)
t+ σWt +

Nt∑
i=1

Ji

]
=
[(
µ− 1

2
σ2 − λk

)
t+ σWt +

Nt∑
i=1

ln(ji)
] (D.1)

The characteristic function of the log return process can be defined as the following expec-
tation or simply by the Fourier transform of log-return density function.

fϕ (ln(St/S0)) = E [exp (iϕ ln(St/S0))]

= E
[

exp
[
iϕ
(
µ− 1

2
σ2 − λk

)
t
]]
E [exp (iϕσWt)] E

[
exp

( Nt∑
i=1

iϕJi
)]

= exp
[
iϕ
(
µ− 1

2
σ2 − λk

)
t
]

exp
[1
2

(iϕσ)2 t
]
E
[

exp
( Nt∑
i=1

iϕ ln(ji)
)]

= exp
[
iϕ
(
µ− 1

2
σ2 − λk

)
t− 1

2
ϕσ2t

] [
exp

(
λtE(jiϕ − 1)

)]
= exp

[
iϕµt− 1

2
iϕσ2t− iϕλtk − 1

2
ϕ2σ2t+ λtE

(
jiϕ − 1

) ]

fϕ (ln(St/S0)) = exp
[
iϕµt− 1

2
iϕ (1− iϕ)σ2t+ λ

[
E
(
jiϕ − 1

)
− iϕk

]
t
]

(D.2)

The second line is based on a pdf of Poisson counter using the property of law of iterated
expectation and the third line is based on the Taylor expansion of exponential function.
Note that all ji are identically distributed as j. Expectation of E (jiϕ − 1) is also defined by
the law of iterated expectations. Using the above characteristic function, the mean and the
volatility of the log return process can be defined with the derivatives of the characteristic
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function.

E
[

ln(St/S0)
]

= (−i)∂f
∂ϕ
|ϕ=0 =

(
µ− 1

2
σ2 + λE [ln j]− λk

)
t

V ar
[

ln(St/S0)
]

= (−i)2 ∂
2f

∂ϕ2
|ϕ=0 =

(
σ2 + λ (E [ln j])2 + λ (V ar [ln j])

)
t

When the jump size is log normal, Ln(j) ∼ N
(
µj − 1

2
σ2
j , σ

2
j

)
or j ∼ LogN (eµj , e2µj (eσj − 1)),

E [ln(St/S0)] = µt− 1

2
σ2t+ λ

(
µj −

1

2
σ2
j

)
t− λkt (D.3)

V ar [ln(St/S0)] = σ2t+ λ
[(
µj −

1

2
σ2
j

)2
+ σ2

j

]
t (D.4)

In the case of risk-neutral process JQ = ln(jQ) ∼ N
(
µj − γσ2

j − 1
2
σ2
j , σ

2
j

)
fQϕ

[
ln
St
S0

]
= exp

[
iϕrt− 1

2
iϕ (1− iϕ)σ2t+ λQt

[
EQ
(
jiϕ − 1

)
− iϕkQ

] ]
(D.5)

EQ [ln(St/S0)] = rt− 1

2
σ2t+ λQ

[
µj − γσ2

j −
1

2
σ2
j

]
t− λQkQt (D.6)

V arQ [ln(St/S0)] = σ2t+ λQ
[(
µj − γσ2

j −
1

2
σ2
j

)2
+ σ2

j

]
t (D.7)

Following the Proposition 2, when the underlying asset follows the dynamic of (2.9), the
upper bound characteristic function and its first two central moments can be defined similarly
by equations (D.8), (D.9), and (D.10) respectively.

fUϕ

[
ln
St
S0

]
= exp

[
iϕrt− 1

2
iϕ (1− iϕ)σ2t+ (λ+ λUt)

[
EU
(
jiϕ − 1

)
− iϕkU

]
t
]

(D.8)

EU
[

ln
St
S0

]
= rt− 1

2
σ2t+ (λ+ λUt)E

U
[
ln(jU)

]
t− (λ+ λUt) k

U t

= rt− 1

2
σ2t+ λ

(
µj −

1

2
σ2
j

)
t+ λUt (ln jmin) t− (λ+ λUt) k

U t

(D.9)
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V arU
[

ln
St
S0

]
= σ2t+ (λ+ λUt)

(
EU
[
ln(jU)

])2
t+ (λ+ λUt)

(
V arU

[
ln(jU)

])
t

= σ2t+
1

λ+ λUt

[
λ
(
µj −

1

2
σ2
j

)
+ λUt (ln (jmin))

]2

t+ λσ2
j t

(D.10)

In the analysis of the upper bound, we discuss the limiting distribution that includes the
diffusion component and a truncated jump component where the truncation limit is chosen
to meet the observed jump amplitude in econometric studies of jump diffusion.37 In this case
the first and second central moments can be defined by equations (D.11) and (D.12) where
Φ is the Normal cumulative function and φ is the Normal probability function.

EU
[

ln
St
S0

|j > jmin

]
= rt− 1

2
σ2t

+

[
λ
(
µj −

1

2
σ2
j

)
+ λUt (ln jmin) +

√
λ (λ+ λUt)σj

φ (a0)

1− Φ (a0)

]
t

− (λ+ λUt) k
U × Φ (σj − a0)

Φ (−a0)
t

(D.11)

V arU
[
ln
St
S0

|j > jmin

]
= σ2t+ (λ+ λUt)×[

λ

λ+ λUt

(
µj −

1

2
σ2
j

)
+

λUt
λ+ λUt

(ln jmin) +

√
λ

λ+ λUt
σj

φ (a0)

1− Φ (a0)

]2

t

+ λσ2
j

[
1 +

a0φ (a0)

1− Φ (a0)
−
( φ (a0)

1− Φ (a0)

)2
]

(D.12)

where a0 =
[
ln (jmin)−

(
µj − 0.5× σ2

j

)]
/σj.

Another important special case discussed in Remark 2.4 and equation (2.13) where the lower
limit of the jump amplitude is equal to 0. Therefore, jmin = 0 and the return distribution
has an absorbing state in which the stock becomes worthless. In this case the upper bound
characteristic function and its central moments are as follow.

f jmin=−1
ϕ

[
ln
St
S0

]
= exp

[
iϕµt− 1

2
iϕ (1− iϕ)σ2t+ λ

[
E
(
jiϕ − 1

)
− iϕk

]
t
]

(D.13)

37See Lien [1985] regarding truncated lognormal distributions.
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Ejmin=−1 [ln(St/S0)] = µt− 1

2
σ2t+ λ

(
µj −

1

2
σ2
j

)
t− λkt (D.14)

V arjmin=−1 [ln(St/S0)] = σ2t+ λ
[(
µj −

1

2
σ2
j

)2
+ σ2

j

]
t (D.15)

Similarly, we introduce the lower bound characteristic function and its central moments when
the underlying asset follows the dynamic of (2.16), as in Proposition 3.

fLϕ

[
ln
St
S0

]
= exp

[
iϕrt− 1

2
iϕ (1− iϕ)σ2t+ λ

[
EL
(
jiϕ − 1

)
− iϕkL

]
t
]

(D.16)

EL [ln(St/S0)] = rt− 1

2
σ2t+ λEL

[
ln(jL)

]
t− λkLt (D.17)

V arL [ln(St/S0)] = σ2t+ λ
(
EL
[
ln(jL)

])2
t+ λ

(
V arL

[
ln(jL)

])
t (D.18)

Accordingly, if the distribution of J = ln(j) is normal and truncated at the upper bound ln (j̄)
then the central moments are given by (D.19) and (D.20) where b0 =

[
ln (j̄)−

(
µj − 0.5σ2

j

)]
/σj.

EL
[

ln
St
S0

|j < j̄
]

= rt− 1

2
σ2t+ λEL

[
ln(jL) |j < j̄

]
− λEL

[
jL − 1 |j < j̄

]
t

= rt− 1

2
σ2t+ λ

[(
µj −

1

2
σ2
j

)
+ σj

φ (b0)

Φ (b0)

]
− λk × Φ (−σj + b0)

Φ (b0)
t

(D.19)

V arL
[

ln
St
S0

|j < j̄
]

= σ2t+ λ
[
EL
[
ln(jL) |j < j̄

] ]2

t+ λ
[
V arL

[
ln(jL) |j < j̄

] ]
t

= σ2t+ λ
[
µj −

1

2
σ2
j + σj

φ (b0)

Φ (b0)

]2

t

+ λσ2
j

[
1− b0φ (b0)

Φ (b0)
−
(φ (b0)

Φ (b0)

)2
]
t

(D.20)
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E Stochastic Volatility and Jumps Under Stochastic

Dominance

Here we discuss how the incorporation of stochastic volatility (SV) will affect the jump
diffusion SD bounds on index options. SV introduces an additional source of systematic
risk, which can be handled either by arbitrage or by equilibrium considerations. We sketch
below an extension of our approach to the pricing of jump risk that can incorporate SV,
provided its systematic risk implications are handled outside our model.

In a combined SV and jump-diffusion process, the stock returns are still given by (2.8) but
the volatility σt is random and follows a general diffusion, often a mean-reverting Ornstein-
Uhlenbeck process.38 In our case we use a general form with an unspecified instantaneous
mean m(σ2

t ) and volatility s(σ2
t ). The asset dynamics then become

dSt/St = (µt − λk)dt+ σtdW1 + (j − 1)dN
dσ2

t = m(σ2
t )dt+ s(σ2

t )dW2,
(E.1)

where the two Brownian motions are correlated as dW1.dW2 = ρσ2
t dt. The following discrete

representation (E.2) can be easily shown by applying Lemma 2 to converge to (E.1):39

(St+∆t − St) /St ≡ zt+∆t = µ(St)∆t+ σtε
√

∆t+ (j − 1)∆N

σ2
t+∆t − σ2

t = m(σ2
t )∆t+ s(σ2

t )ς
√

∆t
(E.2)

Where ς is an error term of mean 0 and variance 1, and with correlation ρ(σ2
t ) between ε

and ς. In what follows we shall assume that this correlation is constant.

Under reasonable regularity conditions the pricing kernel at time t conditional on the state
variable vector (St, σt) is monotone decreasing. Similarly, for any given σt the option price
is convex in the stock price.40 Hence, for any given volatility path over the interval [0, T ] to
option expiration the option prices at any time t are bound by the expressions Ct(St, σt) and
Ct(St, σt) given in (2.3). Since both of these expressions are expected option payoffs under
risk neutral distributions, we can apply arbitrage methods as in Merton [1976] to price the
options given a price ξ(St, σt, t) for the volatility risk. Proposition 2 and 3, therefore, hold
and the admissible option’s upper bound satisfies the PDE in (E.3) and its lower counterpart
satisfies the PDE in equation (E.4).

38See Heston [1993].
39We also use the proof of the convergence of the diffusion process discussed in Oancea and Perrakis [2014].

In the extension of the proof to stochastic volatility, the only difference is related to the vector φt in applying
the Lindeberg condition, which is now a two-dimensional (St, σ

2
t ) vector.

40See the results of Bergman et al. [1996].
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1

2
σ2
tS

2∂
2C

∂S2
+
[
r − (λ+ λUt)k

U
]
S
∂C

∂S
+ ρσts(σ

2
t )

∂2C

∂S∂σ2
t

+
1

2
s2(σ2

t )
∂2C

∂2σ2
t

+

+
[
m(σ2

t )− ξ(St, σt, t)
] ∂C
∂σ2

t

− ∂C

∂T
+ (λ+ λUt)E

U
[
C(SjUt )− C(S)

]
= rC

(E.3)

1

2
σ2
tS

2∂
2C

∂S2
+
[
r − λkL

]
S
∂C

∂S
+ ρσts(σ

2
t )

∂2C

∂S∂σ2
t

+
1

2
s2(σ2

t )
∂2C

∂2σ2
t

+

+
[
m(σ2

t )− ξ(St, σt, t)
] ∂C
∂σ2

t

− ∂C

∂T
+ λEL

[
C(SjLt )− C(S)

]
= rC

(E.4)

The estimation of (E.3)-(E.4) under general conditions presents computational challenges
that lie outside the scope of this paper and remains a topic for future research.
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Figure 2.1: Convergence of Jump-Diffusion Option Bounds

This figure illustrates the convergence of the option bounds under a jump-diffusion process
for an ATM option with X = 100, time to maturity T = 0.25 years, and with the following
annual parameters: r = 2%, µ = 4%, σ = 20%, λ = 0.6, µj = −0.05, σj = 7%. The jump
size distribution is lognormal. In the case jmin − 1 > −1, the distribution was truncated to
a worst case jump return of −20%. When jmin − 1 = −1, the return distribution has an
absorbing state where the stock becomes worthless.
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Table 2.1

The table shows the convergence of the jump-diffusion bounds for an ATM option with
X = 100 and time to maturity T = 0.25 years with r = 2%, µ = 4%, σ = 20%, λ = 0.6,
µj = −0.05, σj = 7%, annual parameters. The jump amplitude distribution is lognormal. In
the case jmin − 1 > 1, the distribution was truncated to a worst-case jump return of −20%.
In the last column we present the case when the lower limit of the jump amplitude is equal
to 0, in which jmin − 1 = 1, that is the return distribution has an absorbing state where the
stock becomes worthless.

Periods Lower Bound Merton Price
Upper
Bound

(jmin−1 > −1)

Upper
Bound

(jmin−1 = −1)

5 4.3443 4.4455 4.5521 4.6920
10 4.3764 4.4455 4.5972 4.6964
15 4.3606 4.4455 4.5671 4.6983
20 4.3694 4.4455 4.5784 4.6990
25 4.3757 4.4455 4.5878 4.6994
30 4.3800 4.4455 4.5955 4.6996
35 4.3752 4.4455 4.5851 4.7000
40 4.3802 4.4455 4.5938 4.7001
45 4.3763 4.4455 4.5858 4.7003
50 4.3811 4.4455 4.5943 4.7003
60 4.3743 4.4455 4.5815 4.7006
70 4.3772 4.4455 4.5854 4.7007
80 4.3797 4.4455 4.5892 4.7007
90 4.3820 4.4455 4.5929 4.7008

100 4.3781 4.4455 4.5856 4.7009
150 4.3804 4.4455 4.5881 4.7010
200 4.3838 4.4455 4.5931 4.7011
250 4.3837 4.4455 4.5922 4.7011
300 4.3842 4.4455 4.5927 4.7011
350 4.3851 4.4455 4.5939 4.7012
400 4.3834 4.4455 4.5904 4.7012
450 4.3849 4.4455 4.5928 4.7012
500 4.3838 4.4455 4.5906 4.7012
600 4.3848 4.4455 4.5920 4.7012
700 4.3860 4.4455 4.5940 4.7012
800 4.3855 4.4455 4.5926 4.7013
900 4.3852 4.4455 4.5920 4.7013

1,000 4.3852 4.4455 4.5918 4.7013
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Table 2.2

The table shows the jump-diffusion bounds for an ATM option with X = 100 and time to
maturity T = 0.25 years, and annual parameters r = 2%, µ = 4%, σ = 20%, µj = −0.05,
for various values of the intensity parameter and the jump amplitude volatility σj. We vary
the jump volatility and intensity, keeping the overall volatility of the jump-diffusion constant
equal to 0.04444. The jump amplitude distribution is lognormal. In the case, jmin − 1 > 1
the distribution was truncated to a worst-case jump return of −20%.

Lambda
Jump Vol.

(σj)
Lower
Bound

Merton
Price

Upper
Bound

(jmin−1 > −1)

Upper
Bound

(jmin−1 = −1)

0.0 0.0000 4.2275 4.2312 4.2348 4.4842
0.1 0.1996 4.2601 4.3417 4.4832 4.5966
0.2 0.1377 4.2927 4.3991 4.5332 4.6548
0.3 0.1093 4.3226 4.4253 4.5603 4.6813
0.4 0.0918 4.3482 4.4364 4.5755 4.6924
0.5 0.0794 4.3689 4.4417 4.5849 4.6976
0.6 0.0700 4.3852 4.4455 4.5918 4.7013
0.7 0.0624 4.3977 4.4491 4.5973 4.7048
0.8 0.0560 4.4074 4.4529 4.6020 4.7086
0.9 0.0505 4.4151 4.4568 4.6061 4.7124
1.0 0.0456 4.4214 4.4606 4.6099 4.7161
1.1 0.0412 4.4267 4.4643 4.6134 4.7197
1.2 0.0371 4.4314 4.4679 4.6166 4.7231
1.3 0.0332 4.4356 4.4713 4.6198 4.7264
1.4 0.0295 4.4393 4.4745 4.6228 4.7296
1.5 0.0258 4.4427 4.4777 4.6257 4.7326
1.6 0.0221 4.4457 4.4808 4.6285 4.7356
1.7 0.0183 4.4486 4.4838 4.6313 4.7385
1.8 0.0140 4.4514 4.4868 4.6340 4.7413
1.9 0.0085 4.4541 4.4897 4.6366 4.7441
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Table 4.1

This table shows the sensitivity of the equilibrium jump-diffusion call option prices to the
coefficient of relative risk aversion γ for a continuum of coefficients up to 40. The base
case parameters are S = 100, X = 100, T = 0.25, r = 2%, µ = 4%, σ = 20%, λ = 0.6,
µj = −0.05, σj = 7%. The call option prices are based on the Bates [1991] jump-diffusion
model. Implied mean return is calculated based on the jump diffusion equilibrium risk
premium in Section 3.

Risk
Aversion

Call
Price

Implied
Mean

Risk Neutral
Jump Intensity

Risk Neutral
Jump Size

−2.00 4.3846 −0.0676 0.5482 −0.0370
−1.00 4.4007 −0.0240 0.5721 −0.0418
0.00 4.4198 0.0200 0.6000 −0.0464
0.25 4.4251 0.0311 0.6076 −0.0476
0.50 4.4307 0.0422 0.6156 −0.0488
0.75 4.4365 0.0533 0.6238 −0.0499
1.00 4.4425 0.0644 0.6323 −0.0511
1.25 4.4489 0.0756 0.6411 −0.0523
1.50 4.4554 0.0869 0.6503 −0.0534
1.75 4.4623 0.0981 0.6598 −0.0546
2.00 4.4694 0.1095 0.6696 −0.0557
2.25 4.4769 0.1208 0.6798 −0.0569
2.50 4.4847 0.1322 0.6904 −0.0580
2.75 4.4928 0.1437 0.7013 −0.0592
3.00 4.5012 0.1551 0.7126 −0.0604
3.25 4.5101 0.1667 0.7244 −0.0615
4.00 4.5388 0.2016 0.7621 −0.0649
6.00 4.6359 0.2977 0.8846 −0.0741
8.00 4.7723 0.3991 1.0470 −0.0831
10.00 4.9648 0.5085 1.2639 −0.0920
15.00 5.8776 0.8435 2.2043 −0.1140
20.00 7.9741 1.3808 4.3456 −0.1355
25.00 12.2467 2.5064 9.6835 −0.1564
30.00 20.7023 5.5042 24.3900 −0.1768
40.00 65.6746 49.8924 223.4470 −0.2162
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Table 4.2

This table shows the sensitivity of the SD implied upper bound relative risk aversion to
the moneyness and unconditional mean return. SD upper bound on call option prices are
calculated for (columns 3 and 6) and for jmin−1 = −0.8 the full support of jump distribution
(columns 4 and 8). The parameters are S = 100, T = 0.25, r = 2%, µ = 4%− 6%, σ = 20%,
λ = 0.6, µj = −0.05, σj = 7%.

2% Risk Premium 4% Risk Premium

Money
ness

(X/S)

Implied
Relative

Risk
Aversion

Upper
Bound

(Truncated)

Upper
Bound

Implied
Relative

Risk
Aversion

Upper
Bound

(Truncated)

Upper
Bound

0.95 8.36 7.5917 7.7691 11.4630 7.77 8.1059
0.96 8.13 6.9206 7.0831 11.2042 7.10 7.4072
0.97 7.92 6.2842 6.4325 10.9652 6.46 6.7427
0.98 7.72 5.6835 5.8182 10.7437 5.86 6.1137
0.99 7.54 5.1193 5.2410 10.5376 5.29 5.5210
1.00 7.37 4.5918 4.7013 10.3442 4.75 4.9653
1.01 7.24 4.1030 4.2011 10.1802 4.26 4.4487
1.02 7.11 3.6508 3.7384 10.0276 3.80 3.9693
1.03 6.99 3.2345 3.3122 9.8835 3.38 3.5265
1.04 6.87 2.8530 2.9216 9.7443 2.99 3.1194
1.05 6.77 2.5060 2.5664 9.6189 2.63 2.7480
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Table 4.3

This table shows the sensitivity of the SD implied upper bound relative risk aversion to the
time to maturity of the options from one-month expiration until one year to expiration and
unconditional mean return. The SD upper bound on the call option prices is for the whole
support of jump distribution. The base case parameters are S = 100, X = 100, r = 2%,
µ = 4%− 6%, σ = 20%, λ = 0.6, µj = −0.05, σj = 7%.

2% Risk Premium 4% Risk Premium

Time to
Maturity

Implied
Relative Risk

Aversion

Upper
Bound

Implied
Relative Risk

Aversion

Upper
Bound

0.08 6.00 2.57 8.72 2.66
0.10 6.17 2.84 8.93 2.94
0.15 6.64 3.54 9.48 3.70
0.20 7.03 4.15 9.94 4.36
0.25 7.37 4.70 10.34 4.97
0.30 7.67 5.21 10.70 5.53
0.35 7.95 5.68 11.02 6.05
0.40 8.19 6.13 11.31 6.56
0.45 8.43 6.56 11.58 7.04
0.50 8.65 6.97 11.83 7.50
0.55 8.84 7.36 12.05 7.95
0.60 9.02 7.75 12.26 8.38
0.65 9.20 8.12 12.46 8.81
0.70 9.36 8.48 12.65 9.22
0.75 9.52 8.83 12.83 9.63
0.80 9.68 9.17 13.01 10.02
0.85 9.80 9.50 13.15 10.41
0.90 9.95 9.83 13.31 10.79
0.95 10.10 10.16 13.47 11.17
1.00 10.20 10.47 13.60 11.53
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Table 4.4

This table shows the empirical Jump Diffusion parameters for the S&P 500 Index as measured
in the corresponding econometric studies that assume that the underlying process is Jump
Diffusion. All the reported parameters are annual. * indicates cases where the reported
studies did not estimate the risk-free rate, arbitrarily set at 5%. The differences in jump
parameters between EJP and the other studies stems from the fact that EJP captures small
jumps with stochastic volatility, which leads to a lower jump intensity and higher mean and
volatility of the jumps.

Paper Dates
Equity

Premium
Vol.(σ)

Jump
Intensity

Mean
Jump

Jump
Vol.

Risk
Free

Honore (1998) 1928-1988 7.94% 10.04% 62.15 -0.13% 1.9% 5.0%

Andersen et al
(2002)

1953-1996 3.22% 9.91% 12.63 0.00% 2.6% 5.1%

Andersen et al
(2002)

1980-1996 10.80% 11.38% 14.89 0.00% 3.4% 5.1%

Ramezani and
Zeng (2007)a 1926-2003 2.56% 13.49% 10.63 0.08% 2.4% 5.0%∗

Ramezani and
Zeng (2007)b 1926-2003 5.08% 12.70% 18.57 0.05% 2.0% 5.0%∗

Eraker et al
(2003)

1980-1999 7.50% 12.91% 1.51 -2.59% 4.1% 5.0%∗

a Based on raw returns.
b Based on dividend-adjusted returns.
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Table 4.5

This table shows the implied upper bound RRA and corresponding implied equity premium
for the studies reported in Table 4.4. Implied upper bound relative risk aversion (column 4) is
defined by using the JD upper bound option prices (column 3) together with the equilibrium
option prices from the Bates [1991]. Implied equity premium is calculated following Mehra
and Prescott [1985]. The consumption data is annual U.S. data from 1890 to 2004 from
Barro [2006], where the growth rate of real consumer expenditure per person has a mean of
0.020 and its standard deviation is 0.035.

Underlying
Parameters

Dates

JD Upper
Bound
Option
Prices

Implied
Upper Bound
Relative Risk

Aversion

Implied
Equity

Premium

Observed
Equity

Premium

Base Case
Parameters

4.70 7.0 0.93% 2.00%

Honore (1998) 1928-1988 5.49 37.5 4.10% 7.94%

Andersen et al
(2002)

1953-1996 3.89 26.5 3.52% 3.32%

Andersen et al
(2002)

1980-1996 5.82 28.5 3.69% 10.80%

Ramezani and
Zeng (2007)a 1926-2003 4.13 33.5 3.99% 2.56%

Ramezani and
Zeng (2007)b 1926-2003 4.47 47.5 3.84% 5.08%

Eraker et al
(2003)

1980-1999 4.62 22.5 3.10% 7.50%

a Based on raw returns.
b Based on dividend-adjusted returns.
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Figure 4.1: JD Call Price Sensitivity to the Coefficient of Relative Risk
Aversion

This figure shows the sensitivity of the equilibrium jump-diffusion call option prices to the
coefficient of relative risk aversion for a continuum of coefficients up to 10. The parameters
are S = 100, X = 100, T = 0.25, r = 2%, µ = 4%, σ = 20%, λ = 0.6, µj = −0.05,
σj = 7%. The price of call option is based on the Bates [1991] jump-diffusion model. In case
jmin − 1 > −1, the upper bound’s distribution is truncated to a worst-case jump return of
−20%. When jmin − 1 = −1, the lower limit of the jump amplitude is set to 0. Therefore,
the return distribution has an absorbing state where the stock becomes worthless.
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Figure 4.2: Risk neutral Jump Variance Sensitivity to the Coefficient of
Relative Risk Aversion

This figure describes the sensitivity of the variance of the jump component of the log return
under Q-distribution to the coefficient of relative risk aversion for a continuum of coefficients
up to 10. The parameters are r = 2%, µ = 4%, σ = 20%, λ = 0.6, µj = −0.05, σj = 7%,
following the base case parameters. The upper bound jump variance is defined based on the
full support of the jump distribution.
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Figure 4.3: Moneyness and Relative Risk Aversion

This figure describes the sensitivity of the SD implied upper bound on the relative risk
aversion to the moneyness. SD upper bound on call option prices. SD bound is defined
based on the base case parameters S = 100, T = 0.25, r = 2%, µ = 4%, σ = 20%, λ = 0.6,
µj = −0.05, σj = 7% on the entire support of the jump distribution.

49



Figure 4.4: Equilibrium Mean Return and Relative Risk Aversion

This figure describes the sensitivity of the equilibrium mean of the jump-diffusion return
process to the coefficient of relative risk aversion for a continuum of coefficients up to 10.
The base case parameters are r = 2%, µ = 4%, σ = 20%, λ = 0.6, µj = −0.05, σj = 7%.
This relation is based on the well-known equilibrium risk premium where µt − r =σ +j and

σ = γσ2 and j = λk−λQkQ. We draw the equilibrium mean return based on the parameters
estimated from underlying S&P 500 index returns in Honore [1998], Andersen et al. [2002],
Ramezani and Zeng [2007], and Eraker et al. [2003]. More details regarding the underlying
parameters are given in Table (4.4).
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